11. 35. 36 ; 1949, 9119 33 **9:45** ;

BUREAU OF PUBLIC WATER SUPPLY

CALENDAR YEAR 2008 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM

The Federal Safe Drinking Water Act requires each *community* public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request.

20007 ID #s for all Water Systems Covered by this CCR

Please.	Answer the Following Questions Regarding the Consumer Confidence Report
	Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other)
	Advertisement in local paper On water bills Other Belling Office
	Date customers were informed: 6 /19/09
	CCR was distributed by mail or other direct delivery. Specify other direct delivery methods:
	Date Mailed/Distributed:/_/_
&	CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)
	Name of Newspaper: The DANG STAR
	Date Published: 6/19/09
O	CCR was posted in public places. (Attach list of locations)
	Date Posted: 6/19/09 City Billing Office
	CCR was posted on a publicly accessible internet site at the address: www
<u>CERTI</u>	<u>FICATION</u>
the forr	y certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in and manner identified above. I further certify that the information included in this CCR is true and correct and is ent with the water quality monitoring data provided to the public water system officials by the Mississippi Statement of Health, Bureau of Public Water Supply.
Name/	Tille (President, Mayor, Owner, etc.) Date
	Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215

Phone: 601-576-7518

2008 Annual Drinking Water Quality Report City of Grenada

PWS#: 220003, 220004, 220005, 220007, 220036 & 220062 May 2009

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Meridian Upper Wilcox, Middle Wilcox and Lower Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. The general susceptibility rankings assigned to each well of this system are provided immediately below. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the City of Grenada have received moderate to higher susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Mark. W. Tilghman at 662-227-3415. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Tuesday of the month at 7:00 PM at City Hall.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2008. In cases where monitoring wasn't required in 2008, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

PWS ID#:	0220003		7	TEST RESUL	TS				
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source	of Contamination
Radioactiv	e Conta	minants							
5. Gross Alpha	N	2008	2.48	1.36 – 2.48	pCi/L	0		15	Erosion of natura deposits
6. Radium 226 Radium 228	N	2008 2008	.525 .783	.351525 .173783	pCi/1	0		5	Erosion of natura

7. Uranium	N	2008	.004	.002004	μ	g/L·	0'		30	Erosion of natural deposits
Inorganic (Conta	minant	S							
8. Arsenic	N	2008	.56	No Range	p	pb	n/a	1	from orchar	atural deposits; runofi ds; runoff from glass nics production wastes
10. Barium	N	2008	.162	.076 – .162	p	pm	2		discharge fr	f drilling wastes; om metal refineries; atural deposits
13. Chromium	N	2008	.56	No Range	р	pb	100	10		rom steel and pulp n of natural deposits
14. Copper	N	2005/07	7* .8	0	p	pm	1.3	AL=1	systems; er	f household plumbing osion of natural aching from wood es
16. Fluoride	N	2006*	.119	No Range	p	pm	4		additive whi	atural deposits; water ch promotes strong arge from fertilizer ım factories
17. Lead	N	2005/07	7* 2	0	р	pb	0	AL=1		f household plumbing osion of natural
21. Selenium	N	2008	2.1	.5 – 2.1e	р	pb	50	5	metal refine	rom petroleum and ries; erosion of osits; discharge from
Disinfectio	n By-	Product	ts .							
81. HAA5	N	2008	6	No Range	ppb		0	60	By-Product of d disinfection.	rinking water
82. TTHM [Total triḥalomethanes]	N	2008	20.09	No Range	ppb		0	80	By-product of d chlorination.	
Chlorine	N	2008	1.01	.5 – 1.01	ppm		0 MDI	₹L = 4	Water additive	used to control

PWS ID#:	220004			TEST RESUI	LTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
8. Arsenic	N	2008	.392	.345392	ppb	n/a	10	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
10. Barium	N	2008	.021	.016021	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2008	.5	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2008	.135	No Range	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2008	2	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N	2008	.6	No Range	ppb	50	50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Disinfection	on By-Pr	oducts						
82. TTHM	N 2	008 8.	.59 N	o Range ppb		0	80 By	y-product of drinking water

[Total tribalomethanes]				MARION MARION AND AND AND AND AND AND AND AND AND AN	- Control of the cont			chlorination.
Chlorine	N	2008	1.25	.55 – 1.25	ppm	0	MDRL = 4	Water additive used to control microbes

PWS ID#:	220005		,	TEST RESU	ULTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects # of Samples Exceeding MCL/ACL	or Unit Measure -ment	MCLG	MCI	Likely Source of Contamination
Inorganic	Contam	inants						
8. Arsenic	N	2008	.29	.2829	ppb	n/a		10 Erosion of natural deposits; runof from orchards; runoff from glass and electronics production wastes
10. Barium	N	2008	.0257	.02220257	ppm	2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Disinfectio 82. TTHM [Total triMalomethanes]			3.45 N	o Range p	pb	0	80	By-product of drinking water chlorination.
Chlorine	N :	2008 1	.6	0 -1 p	pm	о мі	DRL = 4	Water additive used to control microbes

PWS ID#:	220007			TEST RESU	LTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects of # of Samples Exceeding MCL/ACL	Measure -ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
8. Arsenic	N	2008	.6	.56	ppb	n/a		10 Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
10. Barium	N	2008	.050	.023050	ppm	2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2008	.3	0	ppm	1.3	AL=1	1.3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2008	.21	.1721	ppm	4		4 Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2008	2	0	ppb	0	AL=	15 Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N	2008	1.3	No Range	ppb	50		50 Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Disinfectio	n By-Pı	oducts						
82. TTHM [Total trihalomethanes]	N	2008 8	.53 N	lo Range pp)	0	80	By-product of drinking water chlorination.
Chlorine	N	2008 .	79 .7	7779 pp	m	0 MD	RL = 4	Water additive used to control microbes

PWS ID#: 2	20036		TEST RESULTS					
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples	Unit Measure	MCLG	MCL	Likely Source of Contamination

				Exceed MCL/A	· ,	nent			
Inorganic	Conta	aminants	\$						
8. Arsenic	N	2008	.8	No Range	ppl	0	n/a		Erosion of natural deposits; runof from orchards; runoff from glass and electronics production waste
10. Barium	N	2008	.023	No Range	ppi	n	2		2 Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2008	.6	0	ррі	m	1.3	AL='	1.3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2008	.15	.1415	ррі	n	4		4 Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2008	4	0	ppi		0	AL=	 Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N	2008	2.6	2.5 – 2.6	ppl		50		50 Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Disinfectio			, 	-					
81. HAA5	N ®	2007*	16	No Range	ppb	0		60	By-Product of drinking water disinfection.
32. TTHM Total rihalomethanes]	7	2007*	111	100 - 122	ppb	0		80	By-product of drinking water chlorination.
Chlorine	N	2008	1.4	.7 – 1.4	ppm	0	MDF	RL = 4	Water additive used to control microbes

PWS ID#:	220062			TEST RES	ULTS					
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects # of Samples Exceeding MCL/ACL			CLG	MCI	L	Likely Source of Contamination
Inorganic	Contam	inants								
8. Arsenic	N	2008	.3	No Range	ppb		n/a		10	Erosion of natural deposits; runof from orchards; runoff from glass and electronics production wastes
10. Barium	N	2008	.016	005016	ppm		2		2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2008	.3	0	ppm		1.3	AL=1	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2008	.13	.1213	ppm		4		4	Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2008	4	0	ppb		0	AL=		Corrosion of household plumbing systems, erosion of natural deposits
Disinfectio	n By-Pr	oducts								
81. HAA5	N 2	008 9	5 7	- 10 p	pb	0		60	By-	Product of drinking water
82. TTHM [Total trihalomethanes]	N 2	008 3	2.25 27	7-41 p	pb	0		80	Ву-	product of drinking water orination.
Chlorine	N 2	008 1.	17 .6	3 – 1.17 p	pm	0	MDR	L = 4		ter additive used to control robes

Disinfection By-Products:

(82) Total Trihalomethanes (TTHMs). Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

As you can see by the table, our systems had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in May of 2004; January of 2006; July of 2007 and October of 2008. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

***** MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The City of Grenada works around the clock to provide top quality water to every tap. We have four certified operators on staff, who would be pleased to answer any and all customer questions. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

RECEIVED-WATER SUPPLY

2009 JUL - 1 AM 9: 12

Million Marketine

RETURN THIS STUB WITH PAYMENT TO:

CITY OF GRENADA-WATER DEPARTMENT

116 S. MAIN STREET GRENADA, MS 38901 (662) 227-3400 FIRST-CLASS MAIL U.S. POSTAGE PAID GRENADA, MS PERMIT #1

2062

	DUE DUE	AFTER DUE DATE	AMOUNT BUE
		373 773	28.73
06101640	7/10/2009	ជាជាម (ជ	1

CUT OFF WILL BEGIN @ 8 A.M. THURSDAY JULY 16, 2009!!!
2008 CONSUMER CONFIDENCE REPORT AVAILABLE
UPON REQUEST @ OFFICE!!! HAPPY 4TH OF JULY!!!

RETURN SERVICE REQUESTED

MARTHA MORGAN 1889 MURFF DRIVE GRENADA, MS 38901

. Haladharan Madadaddhardhardadadadadad RETURN THIS STUB WITH PAYMENT TO:

CITY OF GRENADA-WATER DEPARTMENT

116 S. MAIN STREET GRENADA, MS 38901 (662) 227-3400 FIRST-CLASS MAIL U.S. POSTAGE PAID GRENADA, MS PERMIT #1

		THE PARTY OF THE P	AMOUNT DUE
ACCOUNT NUMBER	DUE DATE	AFTER DUE DATE	BY DUE DATE
08009080	7/10/2009	44. 05	39.05

CUT-OFF WILL BEGIN @ 8 A.M. THURSDAY JULY 16, 2009!!! 2008 CONSUMER CONFIDENCE REPORT AVAILABLE UPON REQUEST @ OFFICE!!! HAVE A SAFE & HAPPY JULY 4TH

RETURN SERVICE REQUESTED

MARK GRIMES P.O.BOX 342 GRENADA, MS 38902-0342

This NOTICE WAS SENT TO All CUSTOMERS ON Cty of GRENAM SYSTEMS

2009 JUL - 1 AM 9: 12 The Baily Star

Proof of Publication

STATE OF MISSISSIPPI COUNTY OF GRENADA

Before me, the undersigned authority in and for the County and State aforesaid, this day personally appeared

who, being duly sworn, states on oath that he is the

2008 Annual Drinking Water Quality Report
City of Grenada
PWS#: 220003, 220004, 220005, 220007, 220036 & 220062
May 2009

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Meridian Upper Wilcox, Middle Wilcox and Lower Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. The general susceptibility rankings assigned to each well of this system are provided immediately below. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the City of Grenada have received moderate to higher susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Mark. W. Tilghman at 662-227-3415. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Tuesday of the month at 7:00 PM at City Hall.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2008. In cases where monitoring wasn't required in 2008, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

PWS ID#:	<i>ULL</i> UUU3		j	TEST RESUL	13			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source of Contamination
Radioactiv	e Conta	minants						
5. Gross Alpha	N	2008	2.48	1.36 2.48	pCi/l	***************************************	·	

Redium 228	1	2008	783	173783	P~" '	I "I		5 Erosion of natura
7. Uranium '	N	2008	.004	.002004	h8/r.	0'		30' Erosion of natura deposits
Inorganic	Conta	minant	S					
8. Arsenic	N	2008	.56	No Range	ppb	n/a	10	from orchards; runoff from glass
10. Barlum	N	2008	.162	.076162	ppm .	2	2	and electronics production was Discharge of drilling wastes; discharge from metal refineries erosion of natural deposits
13. Chromium	N	2008	.56	No Range	ppb	100	100	
14. Copper	N	2005/0	7* .8	0	ppm	1.3	AL=1.3	Corrosion of household plumbin systems; erosion of natural deposits; leaching from wood
16. Fluoride	N	2006*	,119	No Range	ppm	4	4	preservatives Erosion of natural deposits; was additive which promotes strong teeth; discharge from fertilizer
17, Lead	N	2005/0	/* 2	0	ppb	0	AL=15	and aluminum factories Corrosion of household plumbir systems, erosion of natural deposits
21, Selenium	N	2008	2.1	.5 - 2.1e	ppb	50	50	
Disinfection	n By-I	roduci	s					THIN ISS
81. HAA5	N	2008	6	No Range	ppb	0	60 B	y-Product of drinking water sinfection.
82. TTHM [Total trihalomethanes]	N	2008	20.09	No Range	ppb	0	80 8	/-product of drinking water dorination.
Chlorine	N	2008	1.01	.5 – 1.01	ppm	0 MDr		ater additive used to control
PWS ID#:	220004	<u> </u>		TEST RI	CSITE TS		<u>I m</u>	icrobes
Contaminant	Violation Y/N	····	Leve Detect	Range of Det	ects or Unit bles Measure ng -ment	MCLG	MCL.	Likely Source of Contamination
Inorganic	Contar	oinants	- I					No. 1
8. Arsenic	N	2008	.392	.345392	ppb	n/a	10	Erosion of natural deposits; runo from orchards; runoff from glass and electronics production waste
10. Berium 14. Copper	N N	2008	.021	0 016- 021	ppm	1.3	2 AL=1.3	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits Corrosion of household plumbin
16. Fluoride	N	2008	.135	No Range	ppm	4	4	systems; erosion of natural deposits; leaching from wood preservatives Erosion of natural deposits; wat
								additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2008	2	0	ppb	0	AL=15	Corrosion of household plumbin systems, erosion of natural deposits
21. Selenium	N	2008	6,	No Range	ppb	50	60	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Disinfectio								
82.TTHM	N .	2008	8.59	No Range	ppb	0	80 By	-product of drinking water orination.
Total						\$100 AT \$100 AV \$1.500.		iter additive used to control
(1 otal (rihalomethanes) Chlorine	N	2008	1,25	.55 - 1.25	ppm	0 MDR		crobes
rihalomethanes] Chlorine	ll			TEST RE	SULTS		mie	arbes .
Chlorine PWS ID#: Contaminant	220005 Violation	Date Collecte	Leve Detect	TEST RE	SULTS ects or Unit Measure man unit measure	0 MDR		
irihalomethanes) Chlorine PWS ID#: Contaminant Inorganic	220005 Violation	Date Collecte	Leve Detect	TEST RE Range of Detection # of Samp Exceedir	SULTS ects or Unit Measure man unit measure		mie	Likely Source of Contamination Erosion of natural deposits; runc from orchards; runoff from glass
Chlorine PWS ID#: Contaminant Inorganic (8. Arsenic	220005 Violatior Y/N Contain	Date Collecte	Leve Detect	TEST RE I Range of Det ed # of Samp Exceedir MCL/AC	SULTS ects or Unit Measure -ment Unit Unit Unit Unit Unit Unit Unit Un	MCLG	MCL	Erosion of natural deposits; runc from orchards; runof from glass and electronics production west: Discharge of drilling wastes; discharge from metal refineries;
Chlorine PWS ID#: Contaminant Inorganic (8. Arsenic 10. Barlum	220005 Violation Y/N Contain N N N By-P	Date Collecte ninants 2008 2008	.29 .0257	TEST RE Range of Det # of Samp Exceedir MCL/AC	SULTS ects or Unit Measure -ment Unit Unit Unit Unit Unit Unit Unit Un	MCLG n/a	MCL 10	Likely Source of Contamination Erosion of natural deposits; runc from orchards; runoff from glass and electronics production wast Discharge of drilling wastas;
Chlorine PWS ID#: Contaminant Inorganic (8. Arsenic 10. Barfurn	220005 Violation Y/N Contain	Date Collecte ninants 2008	.29 .0257	TEST RE Range of Det # of Samp Exceedir MCL/AC	SULTS ects or Unit Measure -ment Unit Unit Unit Unit Unit Unit Unit Un	MCLG n/a	MCL 10 2	Erosion of natural deposits, runo from orchards, runoffrom glass and electronics production waste. Discharge of drilling wastes; discharge from metal refineries;

The Daily Star

Proof of Publication

STATE OF MISSISSIPPI COUNTY OF GRENADA

Before me, the undersigned authority in and for the County and State aforesaid, this day personally appeared

	220007			TEST RES		<u> </u>				
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detect # of Sample Exceeding MCL/ACL	s Meas	ure	re	MCL		Likely Source of Contamination
Inorganic (Contam	inants		1000						
8. Arsenic	N	2008	.6	,56	ppb		n/a	,	10	Erosion of natural deposits; runo from orchards; runoff from glass and electronics production waste
10. Barium	N	2008	.050	.023050	ppm		2		2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2008	,3	0	ppm		1.3	AL=1	,3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2008	.21	.1721	ppm		4		4	Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2008	2	0	ppb		0	AL=	15	Corrosion of household plumbing systems, erosion of natural deposits
21. Selenium	N	2008	1.3	No Range	ppb		50		50	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Disinfectio	n By-Pi	roducts								
82. TTHM [Total			8.53	No Range	ppb	0		80		product of drinking water orthation.
trihalomethanes] Chlorine	N	2008	.79	77 - ,79	ppm	Ö	MOF	L=4		eter additive used to control
ANNAMA KENNAMATAN PERMENDIAN PARAMANAN	NEED BEAUTIFUL TO THE PROPERTY OF THE PARTY									
PWS ID#:	220036			TEST RES	ULTS					
PWS ID#:	Violation	Date	Level	TEST RES	ats or Uni		LG	MCL		Likely Source of Contamination
		Date Collected	Level	Range of Detect # of Sample	tsor Uni	ure	alg	MCL		
Contaminant	Violation Y/N	Collected	Level	Range of Detec	tsor Uni	ure	ilo I	MCL		
Contaminant Inorganic	Violation Y/N Contan	Collected	Level Detected	Range of Detec # of Sample Exceeding MCL/ACL	ds or Units Meas	ure				Likely Source of Contamination
Contaminant Inorganic (B. Arsenic	Violation Y/N Contant	Collected inants 2008	Level Detected	Range of Detec # of Sample Exceeding MCL/ACL No Range	ds or United Measurement (Measurement)	ure	n/a			Likely Source of Contamination Erosion of natural deposits; runof from glass and electronics production waste
Contaminant Inorganic (8. Arsenic 10. Barlum	Violation Y/N Contain N	inants 2008	Level Detected	Range of Detec # of Sample Exceeding MCL/ACL No Range	ds or Units Meas	ure				Likely Source of Contamination Erosion of natural deposits; runof from orchards; runoff from class
Contaminant Inorganic (8. Arsenic 10. Barlum 14. Copper	Violation Y/N Contain N N	inants 2008 2008	.8 .023	Range of Detec # of Sample Exceeding MCL/ACL No Range No Range	ds or United Measurement (Measurement)	ure	n/a		10	Likely Source of Contamination Erosion of natural deposits; runcfrom orchards; runoff from glass and electronics production waste. Discharge of driffling wastes; discharge from metal refineries; erosion of natural deposits
Contaminant Inorganic (8. Arsenic 10. Barlum	Violation Y/N Contain N	inants 2008	Level Detected	Range of Detec # of Sample Exceeding MCL/ACL No Range	ts or Uni Meas -me: ppb	ure	n/a 2	AL=1	10	Likely Source of Contamination Erosion of natural deposits; runc from orchards; runoff from glass and electronics production waste discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer
Inorganic (a. Arsenic 10. Barlum 14. Copper 16. Fluoride	Violation Y/N Contain N N	inants 2008 2008	.8 .023	Range of Detec # of Sample Exceeding MCL/ACL No Range No Range	ds or Uni ss Meas -me ppb ppm ppm	ure	n/a 2 1.3	AL=1	10 2 3	Likely Source of Contamination Erosion of natural deposits; rund from orchards; runoff from glass and electronics production wash Discharge of driffling wastes; discharge from metal refineries; erosion of natural deposits. Corrosion of household plumbin systems, erosion of natural deposits; leaching from wood preservatives Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories Corrosion of household plumbing systems, erosion of natural
Contaminant Inorganic (8. Arsenic 10. Barlum 14. Copper	Violation Y/N	Collected	Level Detected	Range of Detec # of Sample Exceeding MCL/ACL No Range No Range	ppb ppm	ure	n/a 2 1.3	AL=1	3 3 4	Likely Source of Contamination Erosion of natural deposits; runcfrom orchards; runoff from glass and electronics production waste Discharge of driffling wastes; discharge from metal refineries; erosion of natural deposits. Corrosion of nousehold plumbing systems; erosion of natural deposits; leaching from wood preservatives. Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories. Corrosion of household plumbing systems, erosion of natural deposits. Discharge from petroleum and metal refineries; erosion of
Contaminant Inorganic (8. Arsenic 10. Barlum 14. Copper 16. Fluoride 17. Lead	Violation Y/N Contain N N N N N	Collected	Level Detected	Range of Detec # of Sample Exceeding MCUACL No Range No Range 0 .1415	ppb ppm ppm	ure	n/a 2 1.3 1.3	AL=1	3 3 4	Likely Source of Contamination Erosion of natural deposits; runc from orchards; runoff from glass and electronics production waste discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories Corrosion of household plumbing systems, erosion of natural deposits Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from natural deposits; discharge from
Inorganic (B. Arsenic 10. Barlum 14. Copper 16. Fluoride 17. Lead	Violation V/N Contan N N N N N N N N N N N N N	Collected	Level Detected	Range of Detec # of Sample Exceeding MCUACL No Range No Range 0 .1415	ppb ppm ppm	ure	n/a 2 1.3 1.3	AL=1	3 3 4 By-	Likely Source of Contamination Erosion of natural deposits; runc from orchards; nunoff from glass and electronics production waste Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories Corrosion of household plumbing systems, erosion of natural deposits Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Inorganic (8. Arsenic 10. Barlum 14. Copper 16. Fluoride 17. Lead 21. Selenium	Violation Y/N Contain N N N N N N N N N N N N N	Collected	Level Detected	Range of Detec # of Sample Exceeding MCL/ACL No Range 0 .1415 0 2.5 - 2.6	ppb ppm ppm ppb	ure	n/a 2 1.3 1.3	AL=1 AL=1 60 80	110 2 3 3 4 4 By-diss By-	Likely Source of Contamination Erosion of natural deposits; rund from orchards; runoff from glass and electronics production wash Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits Corrosion of nousehold plumbin systems; erosion of natural deposits; leaching from wood preservatives Erosion of natural deposits; wate additive which promotes strong teeth; discharge from fertilizer and aluminum factories Corrosion of household plumbin systems, erosion of natural deposits Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines

PWS ID#:	220062			TEST RES	ULT	S			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects # of Samples Exceeding MCL/ACL	I M	Unit easure ment	MCLG	MCL	Likely Source of Contamination
Inorganic (Contan	inants							
8. Arsenic	N	2008	.3	No Range	bt	xb dx	r/a		10 Erosion of natural deposits; runo from orchards; runoff from glass and electronics production waste
10. Barium	N	2008	.016	005016	PI	SM .	2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2008	.3	0	PE	am .	1,3	AL=1	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
16. Fluoride	N	2008	.13	.1213	Pi	OFF	4		Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	N	2008	4	0	pį	ob .	0	AL=	15 Corrosion of household plumbing systems, erosion of natural deposits
Disinfectio	n By-P	roducts		1					
81. HAA5	N	2008).5 7	-10	ppb		0	60	By-Product of drinking water disinfection.
82. TTHM [Total trihalomethanes]	N	2008	2.25 2	7 - 41	ppb		0	80	By-product of drinking water chlorination.
Chlorine	N	2008	.17	83 – 1.17	ppm		O MIC	RL = 4	Water additive used to control microbes

Disinfection By-Products:

(82) Total Trihalomethanes (TTHMs). Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

As you can see by the table, our systems had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected however the EPA has determined that your water IS SAFE at these levels.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in May of 2004; January of 2006; July of 2007 and October of 2008. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population, immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

*****A MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007 - December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The City of Grenada works around the clock to provide top quality water to every tap. We have four certified operators on staff, who would be pleased to answer any and all customer questions. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

The Daily Star

Proof of Publication

STATE OF MISSISSIPPI COUNTY OF GRENADA

Before me, the undersigned authority in and for the County and State aforesald, this day personally appeared

Marguta Downer

who, being duly sworn, states on oath that he is the

Classified leprosentative

of The Daily Star, a newspaper published in the city of Grenada, state and county aforesaid, with a general circulation in said county, and which has been published for a period of more than one year, and that the publication of the notice, a copy of which is hereto attached, has been made in said paper Times, at weekly intervals and in the regular entire issue of said newspaper for the numbers and dates hereinafter named, to-wit:

Vol 54 No 253 on the 26 day of the 20 09

VolNoon theday of20	
VolNoon theday of20	
Sworn to and subscribed before me, this day	of
June 20.09.	
Muffeld, ME Hand	?
(SEAL)	
Wississin	
AN THE T. M. C. M.	
NOTARY PUBLIC NO	

CANADA COU

2008 CCR Contact Information

Date: 6 9 2009	Time: 4.30
PWSID: 22/03	
System Name: City o	f Grenada
Lead/Copper Language	MSDH Message re: Radiological Lab
MRDL Violation	Chlorine Residual (MRDL) RAA
Other Violation(s)	
Will correct report & mail copy mark	ed "corrected copy" to MSDH.
NAVIII patific quatamore of qualichility of	
vviii notily customers of availability c	f corrected report on next monthly bill.
VVIII flotily customers of availability c	662-227-3415
VVIII flotily customers of availability c	
VVIII flotily customers of availability of	662-227-3415
VVIII Hotily customers of availability of	662-227-3415
	662-227-3415 662-809-7839 cell her Dale Ratliff (
Spoke with Add	662-227-3415 662-809-7839 cell New Dale Ratliff